CONFIDENTIAL

RuhelT

VULNERABILITY REPORT

THURSDAY, MAY 26, 2022

CONFIDENTIAL

MODIFICATIONS HISTORY

Version

Date

Author

Description

1.0

05/26/2022

Jonathan

Initial Version

2/10

CONFIDENTIAL

TABLE OF CONTENTS

GENEIAL INFOIMALION ..ottt ettt et e e et e s ae e s bt sb e e s bt e bt e as e e me e e se e e b e e s b e e b e e b e eanesmnesmeesreenreenneenes 4
R oo 1= PSP OT PP PP PRTPI 4
(07 - [0 11 14 [] E T P P TP PP PP PP PP PP PPPPPP 4

EXECUTIVE SUMIMIAIY oiiiiiiiiiiiiiiitiiiiitiiiiit s s 5

VUINEIADIlITIES SUMIMAIY ..ottt ettt e e h et e sa bt e e ae e e s bt e e bt e e sab e e aae e e sa b e e abe e e shb e e bt e e sabeesabeesabeeaneeesabeenneeesaneenneeas 6

TECRNICAI DELAIIS ... ettt ettt e e e s bt e b et e et s et s bee s bt e s bt e bt e s et e ae e e b e e b e e Rt e b e e e ne s anesbeenheenbeeneenneennesraenreens 7
F XU =T ol A Tor= [T a I 237 o T T3 PSSP 7
[0 TR 1 (=T o T o [= PSPPI UPPPRTPI 8
HTIMIL INJECTION ..ttt s 9

3/10

CONFIDENTIAL

GENERAL INFORMATION

SCOPE

undefined has mandated us to perform security tests on the following scope:
e https://ruheit.xyz
e https://intranet.ruheit.xyz
e https://edu.ruheit.xyz

ORGANISATION

The testing activities were performed between 05/20/2022 and 05/24/2022.

4/10

CONFIDENTIAL

EXECUTIVE SUMMARY

5/10

CONFIDENTIAL

VULNERABILITIES SUMMARY

Following vulnerabilities have been discovered:

Risk ID Vulnerability Affected Scope
IDX-001 o] _
Authentication Bypass https://intranet.ruheit.xyz
VULN-002
Cross-Site Scripting https://edu.ruheit.xyz
VULN-003

HTML Injection

https://edu.ruheit.xyz

6/10

CONFIDENTIAL

TECHNICAL DETAILS

AUTHENTICATION BYPASS

CVSSv3 Attack Vector : Network Scope : Unchanged
CRITERIAS
Attack Complexity : Low Confidentiality : High
Required Privileges : None Integrity : High
User Interaction : None Availability : None
AFFECTED SCOPE
DESCRIPTION This issue allow an attacker to bypass login panel using OAUTH method of authentication, but you

need to have to know the users that are registered on the webpage. Then you can change on POST
DATA, the email of another user, then when you send the data modified, you can enter with that user

on intranet.
OBSERVATION
TEST DETAILS
REMEDIATION Make the verification mode, using UID not the email or username

REFERENCES

7/10

CONFIDENTIAL

CROSS-SITE SCRIPTING

CVSS SEVERITY CVSSv3 SCORE
CVSSv3 Attack Vector : Network Scope : Changed
CRITERIAS
Attack Complexity : Low Confidentiality : Low
Required Privileges : None Integrity : Low
User Interaction : Required Availability : None
AFFECTED SCOPE
DESCRIPTION Cross-Site Scripting (XSS) attacks are a type of injection, in which malicious scripts are injected into

otherwise benign and trusted websites. XSS attacks occur when an attacker uses a web application to
send malicious code, generally in the form of a browser side script, to a different end user. Flaws that
allow these attacks to succeed are quite widespread and occur anywhere a web application uses input
from a user within the output it generates without validating or encoding it.

An attacker can use XSS to send a malicious script to an unsuspecting user. The end user’s browser has
no way to know that the script should not be trusted, and will execute the script. Because it thinks the
script came from a trusted source, the malicious script can access any cookies, session tokens, or other
sensitive information retained by the browser and used with that site. These scripts can even rewrite
the content of the HTML page. For more details on the different types of XSS flaws, see: Types of Cross-
Site Scripting.

OBSERVATION

TEST DETAILS

REMEDIATION Preventing cross-site scripting is trivial in some cases but can be much harder depending on the
complexity of the application and the ways it handles user-controllable data.
In general, effectively preventing XSS vulnerabilities is likely to involve a combination of the following
measures:
e Filter input on arrival. At the point where user input is received, filter as strictly as possible
based on what is expected or valid input.
e Encode data on output. At the point where user-controllable data is output in HTTP
responses, encode the output to prevent it from being interpreted as active content.
Depending on the output context, this might require applying combinations of HTML, URL,
JavaScript, and CSS encoding.
e Use appropriate response headers. To prevent XSS in HTTP responses that aren't intended to
contain any HTML or JavaScript, you can use the Content-Type and X-Content-Type-
Options headers to ensure that browsers interpret the responses in the way you intend.
e Content Security Policy. As a last line of defense, you can use Content Security Policy (CSP) to
reduce the severity of any XSS vulnerabilities that still occur.
REFERENCES

8/10

CONFIDENTIAL

HTML INJECTION

CVSS SEVERITY CVSSVv3 SCORE

CVSSv3 Attack Vector : Network Scope : Changed

CRITERIAS
Attack Complexity : Low Confidentiality : Low
Required Privileges : None Integrity : Low
User Interaction : Required Availability : None

AFFECTED SCOPE

DESCRIPTION This vulnerability allows remote attackers to inject their own malicious HTML code into an imported
snapshot, aka HTML Injection. Successful exploitation will allow attacker-supplied HTML to run in the
context of the affected browser, potentially allowing the attacker to steal authentication credentials or
to control how the site is rendered to the user. NOTE: the vendor disputes the risk because there is a
clear warning next to the button for importing a snapshot.

OBSERVATION

TEST DETAILS

REMEDIATION

The most common way of detecting HTML injection is by looking for HTML elements in the incoming
HTTP stream that contains the user input. A naive validation of user input simply removes any HTML-
syntax substrings (like tags and links) from any user-supplied text. However, there are many instances
where the application expects HTML input from the user. For example, this happens when the user
submits visually-formatted text or text containing links to legitimate sites with related content. To
avoid false positives, the security mechanism that detects possible injections and protects the
application should learn in what application context user input is allowed to contain HTML. Also, it
should be able to stop HTML input if it learns that such text is pasted as-is in web page generated by
vulnerable application components.

REFERENCES

9/10

CONFIDENTIAL

10/ 10

